Exercise 102

(a) Find the linear approximation to $f(x)=\sqrt{25-x^{2}}$ near 3 .
(b) Illustrate part (a) by graphing f and the linear approximation.
(c) For what values of x is the linear approximation accurate to within 0.1 ?

Solution

Part (a)

Plug in 3 to the function to determine the corresponding y-coordinate.

$$
f(3)=\sqrt{25-3^{2}}=4
$$

This means the linear approximation touches $f(x)$ at the point $(3,4)$. Now find the slope here by taking the derivative of $f(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \sqrt{25-x^{2}} \\
& =\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(25-x^{2}\right) \\
& =\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2} \cdot(-2 x) \\
& =-\frac{x}{\sqrt{25-x^{2}}},
\end{aligned}
$$

and setting $x=3$.

$$
f^{\prime}(3)=-\frac{3}{\sqrt{25-3^{2}}}=-\frac{3}{4}
$$

Use the point-slope formula to obtain the equation of the line with this slope that goes through $(3,4)$.

$$
\begin{aligned}
y-f(3) & =f^{\prime}(3)(x-3) \\
y-4 & =-\frac{3}{4}(x-3) \\
y-4 & =-\frac{3}{4} x+\frac{9}{4} \\
y & =-\frac{3}{4} x+\frac{25}{4}
\end{aligned}
$$

Therefore, the linear approximation to $f(x)$ at 3 is

$$
L(x)=-\frac{3}{4} x+\frac{25}{4} .
$$

Part (b)

Below is a graph of the function and its linear approximation at 3 .

Part (c)

In order for the linear approximation to be accurate to within 0.1 , the following inequality needs to be solved for x.

$$
\begin{gathered}
|f(x)-L(x)|<0.1 \\
-0.1<f(x)-L(x)<0.1 \\
-0.1+L(x)<f(x)<0.1+L(x)
\end{gathered}
$$

As long as the curve stays between the lines defined by $y=-0.1+L(x)$ and $y=0.1+L(x)$, the linear approximation will be accurate to within 0.1.

This occurs for

$$
2.23933<x<3.66467 .
$$

